
To appear in the Proceedings of the SixteenthACM SIGACT-SIGMOD-SIGART
Conference on Principles of Database Systems, PODS, Tucson, AZ, May 1997.

Answering Recursive Queries Using Views

Oliver M. Duschka

duschka@cs.stanford.edu
Department of Computer Science

Stanford University

Michael R. Genesereth

genesereth@cs.stanford.edu
Department of Computer Science

Stanford University

Abstract

We consider the problem of answering datalog queries us-
ing materialized views. The ability to answer queries using
views is crucial in the context of information integration.
Previous work on answering queries using views restricted
queries to being conjunctive. We extend this work to gen-
eral recursive queries: Given a datalog program P and a
set of views, is it possible to �nd a datalog program that
is equivalent to P and only uses views as EDB predicates?
In this paper, we show that the problem of whether a dat-
alog program can be rewritten into an equivalent program
that only uses views is undecidable. On the other hand, we
prove that a datalog program P can be e�ectively rewritten
into a program that only uses views, that is contained in P,
and that contains all programs that only use views and are
contained in P. As a consequence, if there exists a program
equivalent to P that only uses views, then our construction
is guaranteed to yield a program equivalent to P.

1 Introduction

We consider the problem of how to answer datalog programs
if only materialized views are available as EDB predicates.
This situation appears commonly in information integration,
where information sources are considered to store material-
ized views over a global database schema (see [Ull97] for an
excellent overview). Let us consider the datalog program

P: q(X;Y) :� edge(X;Z); edge(Z;Y); black(Z)

q(X;Y) :� edge(X;Z); black(Z); q(Z;Y)

where edge and black are EDB predicates. If the predicate
edge represents the edges of a graph, and the predicate black
indicates which nodes are colored black, then the program
computes the endpoints of paths of length at least two with
black internal nodes. Only the two views

v1(X;Y) :� edge(X;Y); black(X)

v2(X;Y) :� edge(X;Y); black(Y)

might be available. View v1 stores edges with black starting
nodes, and view v2 stores edges with black end nodes. In

Copyright c1997 by the Association for Computing Machinery, Inc. Permission
to make digital or hard copies of part or all of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for
profit or direct commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from Publi-
cations Dept., ACM Inc., fax +1 (212) 869-0481, or (permissions@acm.org)

this case, it is possible to rewrite datalog program P into an
equivalent datalog program Pv that uses only views v1 and
v2 as EDB predicates:

Pv: q(X;Y) :� v2(X;Z); v1(Z;Y)

q(X;Y) :� v2(X;Z); q(Z;Y)

The equivalence ofP and Pv can be easily seen by expanding
the view de�nitions in Pv. However, if only view v1 or
only view v2 were available, there wouldn't be an equivalent
datalog program because every path would start or end with
a black node respectively.

The �rst question to ask given a datalog program P and
materialized views v1; : : : ; vn is whether there is an equiva-
lent datalog program that uses only v1; : : : ; vn as EDB pred-
icates. We show that this problem is undecidable, even if
the views are conjunctive, and the datalog program and the
views do not contain any built-in predicates.

Surprisingly, however, we are able to give a procedure
to construct a datalog program which is the best possible
rewriting. Formally, given a datalog program P and mate-
rialized conjunctive views v1; : : : ; vn, we show how to con-
struct a datalog program Pv with the following properties:

(i) The only EDB predicates in Pv are the given views
v1; : : : ; vn.

(ii) Pv is contained in P.

(iii) Every datalog program P
0
v that satis�es conditions (i)

and (ii) is contained in Pv.

As a consequence, we prove that our construction is guaran-
teed to yield an equivalent datalog program that only uses
views as EDB predicates, whenever there exists such a pro-
gram. When applied in the context of information inte-
gration, our construction yields query plans for using data
available from information sources as much as possible, while
still guaranteeing that the computed answers satisfy the user
queries.

Example 1.1 Assume we want to integrate three databases
that provide ight information. The �rst database stores
pairs of cities between which Southwest Airlines has non-
stop ights. The second database stores the cities that
can be reached from Tucson by non-stop ights, together
with the airlines o�ering these ights. The third database
provides information on cities connected by United Airlines
ights with one stop-over. We want to integrate these three
databases so that users can ask arbitrary datalog queries
over the EDB predicate flight(From;To;Carrier). The

1

intended meaning of flight(tus; san; wn), for example, is
that Southwest Airlines (wn) o�ers a non-stop ight from
Tucson (tus) to San Diego (san). The three databases that
we want to integrate can be seen as views over the predicate
flight:

v1(F;T) :� flight(F;T; wn)

v2(T; C) :� flight(tus; T; C)

v3(F;T) :� flight(F;Z; ua); f light(Z;T; ua)

Now assume a user is interested in the names of the cities
that can be reached by plane from Tucson without changing
airlines. The following is the corresponding user query:

c(F;T; C) :� flight(F; T;C)

c(F;T; C) :� flight(F; Z;C); c(Z;T; C)

q(T) :� c(tus; T; C)

The query de�nes a predicate c such that c(san; sfo;ua),
for example, means that there is a ight by United Airlines
(ua) with possibly several stop-overs from San Diego to San
Francisco (sfo). Using only the three databases that we
have available, it is impossible to �nd all the cities that can
be reached by plane from Tucson without changing airlines.
The best that we can do is to �nd all the cities that can
be reached from Tucson by ying Southwest Airlines (using
v1) or by ying United Airlines (using v2 and v3), together
with all the cities that can be reached by plane from Tucson
non-stop (using v2). The construction that we will present
in this paper yields a datalog program that in fact computes
exactly these cities. 2

It might seem that the possibility of e�ectively construct-
ing maximally-contained datalog programs contradicts the
previous undecidability result. There is no contradiction,
however. Even if the constructed datalog program Pv is
equivalent to the query datalog program P, there is no way
to determine this fact because it is the case that testing
containment of P in Pv is undecidable.

2 Preliminaries

2.1 Datalog

A Horn rule is an expression of the form

p(�X) :� p1(�X1); : : : ; pn(�Xn)

where p, and p1; : : : ; pn are predicate names, and �X, �X1; : : :,
�Xn are tuples of variables, constants, and function terms.
The head of the rule is p(�X), and its body is p1(�X1), : : :,
pn(�Xn). Each pi(�Xi) is a subgoal of the rule. Every variable
in the head of a rule must also occur in the body of the
rule. A logic program is a set of Horn rules, and a datalog
program is a set of function-free Horn rules. A predicate
is an intensional database predicate, or IDB predicate, in
a program P if it appears as the head of some rule in P.
Predicates not appearing in any head in P are extensional
database predicates, or EDB predicates, in P. We assume
that every program has an IDB predicate q, called the query
predicate, that represents the result of P. Given a program,
we can de�ne a dependency graph, whose nodes are the
predicate names appearing in the rules. There is an edge
from the node of predicate pi to the node of predicate p
if pi appears in the body of a rule whose head predicate
is p. The program is recursive if there is a cycle in the
dependency graph. A conjunctive query is a single non-
recursive function-free Horn rule.

Example 2.1 Consider the datalog program

P: q(X;Y) :� edge(X;Z); edge(Z;Y); black(Z)

q(X;Y) :� edge(X;Z); black(Z); q(Z;Y)

from the introduction. Predicates edge and black are EDB
predicates, and predicate q is an IDB predicate. The pro-
gram is recursive because its dependency graph has a self-
loop on predicate q. 2

2.2 Containment

The input of a datalog program P consists of a database D
storing instances of all EDB predicates in P. Given such a
database D, the output of P, denoted P(D), is an instance
of the query predicate q as determined by, for example, naive
evaluation [Ull89]. A datalog program P

0 is contained in a
datalog program P if, for all databases D, P 0(D) is con-
tained in P(D). Datalog programs P0 and P are equivalent
if P 0 and P are contained in one another. The problem of
determining whether a datalog program P

0 is contained in a
datalog program P is in general undecidable [Shm87]. The
problem becomes decidable if P 0 is non-recursive. The fol-
lowing is a decision procedure for this containment proplem
[RSUV89]. First, replace all variables in the non-recursive
datalog program P

0 by distinct constants. Consider the
database Dc that contains exactly the tuples correspond-
ing to the subgoals in the \frozen" bodies of the rules in P0.
Dc is called the canonical database of P 0. Evaluate P on the
canonical database. P 0 is contained in P if and only if the
\frozen" heads of the rules in P 0 are contained in P(Dc).

Example 2.2 To determine whether the non-recursive dat-
alog program

P 0: q(X;Y) :� edge(X;Z); edge(Z;Y); black(X);
black(Z)

q(X;Y) :� edge(X;V); edge(V;W); edge(W; Y);
black(V); black(W)

is contained in the datalog program P from example 2.1, we
replace the variables in the two rules by distinct constants:

q(c1; c3) :� edge(c1; c2); edge(c2; c3); black(c1);
black(c2)

q(c4; c7) :� edge(c4; c5); edge(c5; c6); edge(c6; c7);
black(c5); black(c6)

This yields the following canonical database:

edge

hc1; c2i, hc2; c3i, hc4; c5i, hc5; c6i, hc6; c7i

black
hc1i, hc2i, hc5i, hc6i

The output of datalog program P on the canonical database
is hc1; c3i, hc4; c6i, hc5; c7i, and hc4; c7i. Because this output
contains hc1; c3i and hc4; c7i, P

0 is contained in P. 2

2.3 Retrievable Programs

A datalog program Pv1;:::;vn is retrievable if it does not con-
tain any EDB predicates besides the view literals v1; : : : ; vn.
We abbreviate Pv1;:::;vn to Pv in cases where the views
v1; : : : ; vn used are clear from the context. The expansion
P

exp
v of a retrievable datalog program Pv is obtained from

Pv by replacing all view literals with their de�nitions. Ex-
istentially quanti�ed variables in views are replaced by new
variables in the expansion.

2

Example 2.3 Given the view

v(X;Y) :� edge(X;Z); edge(Z;Y)

the datalog program

q(X;Y) :� v(X;Z); v(Z;Y)

q(X;Y) :� v(X;Z); q(Z; Y)

is retrievable because its only EDP predicate is the view
literal v. The expansion of this retrievable datalog program
is the following datalog program:

q(X;Y) :� edge(X;V); edge(V; Z); edge(Z;W);
edge(W; Y)

q(X;Y) :� edge(X;V); edge(V; Z); q(Z;Y)

2

A retrievable datalog program Pv is contained in a datalog
program P if P exp

v is contained in P. A retrievable program
Pv is contained in another retrievable program P

0
v, if P

exp
v

is contained in (P0
v)

exp. A retrievable datalog program Pv

is maximally-contained in a datalog program P if Pv is con-
tained in P, and for every retrievable datalog program P

0
v

that is contained in P, P 0
v is already contained in Pv. Note

that the notions of maximal containment and retrievability
are relative to a �xed set of views.

3 Undecidability result

In this section we show the limits of reasoning about an-
swering recursive queries using views. We prove that the
question of the existence of an equivalent retrievable data-
log program is undecidable. In comparison, this problem is
in NP if queries are restricted to be conjunctive [LMSS95].
The undecidability proof uses a reduction from the contain-
ment problem of datalog programs, which is known to be
undecidable [Shm87].

Theorem 3.1 Given a datalog program P with EDB predi-
cates e1; : : : ; en and conjunctive views v1; : : : ; vm over pred-

icates e1; : : : ; en, it is undecidable whether there is a retriev-

able datalog program Pv equivalent to P.

Proof. Let P1 and P2 be two arbitrary datalog programs.
We show that a decision procedure for the above problem
would allow us to decide whether P1 is contained in P2.
Because the containment problem for datalog programs is
undecidable, this proves the claim. Without loss of general-
ity we can assume that there are no IDB predicates with the
same name in P1 and P2, and that the answer predicates
in P1 and P2, named q1 and q2 respectively, have arity m.
Let P be the datalog program consisting of all the rules in
P1 and P2, and of the rules

q(X1; : : : ;Xm) :� q1(X1; : : : ;Xm); e()

q(X1; : : : ;Xm) :� q2(X1; : : : ;Xm)

where e is a new zero-ary EDB predicate. For every EDB
predicate ei(X1; : : : ;Xk

i
) in P1 and P2 (but not for e) de�ne

the view

vi(X1; : : : ;Xk
i
) :� ei(X1 : : : ;Xk

i
).

We show that P1 is contained in P2 if and only if there is a
retrievable datalog program Pv equivalent to P.

00
)

00: Assume P1 is contained in P2. Then P is equiva-
lent to the program Pv consisting of all the rules of P2 with
ei's replaced by the corresponding vi's, and the additional
rule

q(X1; : : : ;Xm) :� q2(X1; : : : ;Xm).

00
(

00: Assume there is a retrievable datalog program Pv

equivalent to P. Then for any instantiation of the EDB
predicates, P and Pv yield the same result, especially for
instantiations where e is the empty relation, and where e
contains the empty tuple. If e is the empty relation then P
produces exactly the tuples produced by P2, and therefore
Pv does likewise. If e contains the empty tuple then P

produces the union of the tuples produced by P1 and P2,
and hence Pv produces this union. Because Pv does not
contain e, Pv will produce the same set of tuples regardless
of the instantiation of e. It follows that P2 is equivalent to
the union of P1 and P2. Therefore, P1 is contained in P2.
2

4 Construction of maximally-contained programs

As we will show in the following, it is possible to construct
maximally-contained retrievable datalog programs. This is
quite surprising, because in the case that there exists an
equivalent retrievable datalog program, maximal contain-
ment implies equivalence. This is no contradiction to the
undecidability result in the previous section, however. Even
if we are able to construct an equivalent retrievable datalog
program Pv, it is still not possible to tell that Pv actually
is equivalent to the original datalog program P because, in
fact, determining whether P is contained in Pv is undecid-
able.

Our construction consists of two steps. In a �rst step we
construct a program that might contain function symbols.
The result of the �rst step is a retrievable logic program, but
not necessarily a datalog program. The function symbols are
introduced in a controlled fashion, so that in a second step
we can transform the logic program into a datalog program.
We then show that the resulting retrievable datalog program
is maximally-contained in the query datalog program.

We need some notation for these transformations. The
inverse v�1 of a view de�nition v is a set of rules having the
view literal v(X1; : : : ;Xm) as body, and each of the pred-
icates in the body of v in turn as heads. The variables
X1; : : : ;Xm of the head of v remain unchanged. Every vari-
able Y that appears in the body of v but not in the head, is
consistently replaced by a term f(X1; : : : ;Xm) where f is a
function symbol, chosen anew for every existentially quan-
ti�ed variable. The inverse V�1 of a set of view de�nitions
V is the union of the inverses v�1 of all view de�nitions v in
V.

Example 4.1 The inverse of the view de�nitions

v1(X;Y) :� edge(X;Z); edge(Z;W); edge(W; Y)

v2(X) :� edge(X;Z)

is the following set of rules:

edge(X;f1(X;Y)) :� v1(X;Y)

edge(f1(X;Y); f2(X;Y)) :� v1(X;Y)

edge(f2(X;Y); Y) :� v1(X;Y)

edge(X;f3(X)) :� v2(X)

2

Given a datalog program P and a set of conjunctive views
V, the construction of the retrievable logic program is quite
simple. We delete all rules from P that contain EDB predi-
cates that do not appear in any of the view de�nitions. To

3

the resulting program, denoted as P�, we add the rules of
V
�1, and call the program so obtained (P�;V�1). Notice

that the EDB predicates of the remaining rules of P are
IDB predicates in (P�;V�1), because they appear in heads
of the rules in V�1. Because naming of IDB predicates is ar-
bitrary, one could rename the IDB predicates in (P�;V�1)
so that their names di�er from the names of the correspond-
ing EDB predicates in P. For ease of exposition, we will not
do it here.

Example 4.2 Consider the datalog program

P: q(X;Y) :� edge(X;Y)

q(X;Y) :� edge(X;Z); q(Z;Y)

which determines the transitive closure of the predicate edge.
Assume there is only one materialized view available:

v(X;Y) :� edge(X;Z); edge(Z;Y)

View v stores endpoints of paths of length two. Just using
this view, there is no way to determine the transitive closure
of the predicate edge. The best one can hope to achieve is to
compute the endpoints of paths of even lengths. Predicate
edge, the only EDB predicate in P, appears in the de�nition
of v. Therefore, (P�;V�1) is just P with the rules of v�1

added:

(P�;V�1): q(X;Y) :� edge(X;Y)

q(X;Y) :� edge(X;Z); q(Z;Y)

edge(X;f(X;Y)) :� v(X;Y)

edge(f(X;Y); Y) :� v(X;Y)

(P�;V�1) indeed yields all endpoints of paths of even length
in its result. For example, assume that an instance of the
EDB predicate edge in P represents the following graph:

G:

h h h h h- - - -

a b c d e

(P�;V�1) introduces three new constants, named f(a; c),
f(b; d), and f(c; e). The IDB predicate edge in V�1 repre-
sents the following graph:

G0:

h h h h h

h h h

�
�
���

�
�
���

�
�
���@

@
@@R

@
@
@@R

@
@
@@R

a b c d e

f(a,c) f(b,d) f(c,e)

P
� computes the transitive closure of G0. Notice that the

pairs in the transitive closure of G0 that do not contain any
of the new constants are exactly the endpoints of paths of
even length in the original graph G. 2

Bottom-up evaluation of logic programs is not guaran-
teed to terminate in general. This is because it might be
possible to generate terms with arbitrary many function
symbols. For example, bottom-up evaluation of the logic
program

q(X) :� p(X)

q(f(X)) :� q(X)

contains the in�nite number of terms a, f(a), f(f(a)), : : : in
its answer, if the EDB predicate p contains the constant a.
In contrast, our construction produces logic programs whose
bottom-up evaluation is guaranteed to terminate. The key
observation is that function symbols are only introduced in
inverse rules. Because inverse rules are not recursive, no
terms with nested function symbols can be generated.

Theorem 4.1 For every datalog program P, every set of
conjunctive views V, and all �nite instances of the views,

the logic program (P�;V�1) has a unique �nite minimal �x-
point. Furthermore, naive and semi-naive evaluation are

guaranteed to terminate, and produce this unique �xpoint.

Proof. (Sketch) P
� is recursive, but does not introduce

function symbols. On the other hand, V�1 introduces func-
tion symbols, but is not recursive. Therefore, every bottom-
up evaluation of (P�;V�1) will necessarily progress in two
stages. In the �rst stage, the instances of the IDB predi-
cates in V

�1 are determined. The second stage will then
be a standard datalog evaluation of P�. Because datalog
programs have unique �nite minimal �xpoints, this proves
the claim. 2

Given instances for its EDB predicates, a logic program
might produce tuples containing function symbols in its re-
sult. Because instances of EDB predicates do not contain
any function symbols, no datalog program produces tuples
in its result containing function symbols. This motivates the
de�nition of a �lter that gets rid of all extraneous tuples. If
D is a database containing instances of the EDB predicates
of a logic program P, then let P(D)# be the set of all tuples
in P(D) that do not contain function symbols. Let P # be
the program that given a database D computes P(D)#.

The following theorem shows that the simple construc-
tion of adding rules of the inverses of the view de�nitions
yields a logic program that uses the views in the best pos-
sible way. After discarding all tuples containing function
symbols, the result of (P�;V�1) is contained in P. More-
over, the result of every retrievable datalog program that is
contained in P is already contained in (P�;V�1).

Theorem 4.2 For every datalog program P and every set
of conjunctive views V, (P�;V�1)# is maximally-contained

in P. Moreover, (P�;V�1) can be constructed in time poly-
nomial in the size of P and V.

Proof. First we prove that (P�;V�1) # is contained
in P. Let E1; : : : ; En be instances of the EDB predicates
in P. E1; : : : ; Em determine the instances of the views in
V which in turn are the EDB predicates of (P�;V�1). As-
sume that (P�;V�1) produces a tuple t that does not con-
tain any function symbols. Consider the derivation tree of t
in (P�;V�1). All the leaves are view literals because view
literals are the only EDB predicates of (P�;V�1). Remov-
ing all leaves from this tree produces a tree with the orig-
inal EDB predicates from P as new leaves. Because the
instances of the views are derived from E1; : : : ; En, there
are constants in E1; : : : ; En such that consistently replacing
function terms with these constants yields a derivation tree
of t in P. Therefore, (P�;V�1)# is contained in P.

Let Pv be an arbitrary retrievable datalog program con-
tained in P. We have to prove that Pv is also contained in
(P�;V�1). Let cv be an arbitrary conjunctive query gen-
erated by Pv. If we can prove that cexpv is contained in

4

(P�;V�1), then Pv is contained in (P�;V�1), which proves
the claim. Let Dc be the canonical database of cexpv . Be-
cause cexpv is contained in P, cexpv (Dc) is contained in the
output of P applied to Dc. Let c be the conjunctive query
generated by P that produces cexpv (Dc). Because all predi-
cates of query c are also in cexpv , and all predicates in cexpv

appear in some view de�nition, c is also generated by P�.
Because cexpv is contained in c, there is a containment map-
ping h from c to cexpv [CM77]. Every variable Z in cexpv that
does not appear in cv is existentially quanti�ed in some view
vi(X1; : : : ;Xm) in cv. Let k be the mapping that maps every
such variable Z to the corresponding term f(X1; : : : ;Xm)

used in v�1
i
. Because P� can derive c, P� can also derive

the more specialized conjunctive query k(h(c)). Using rules
in V

�1, the derivation of k(h(c)) in P
� can be extended

to a derivation of a conjunctive query c0 that only contains
view literals. The identity mapping is a containment map-
ping from c0 to cv. This proves that Pv is contained in
(P�;V�1).

(P�;V�1) can be constructed in time polynomial in the
size of P and V, because every subgoal in a view de�nition
in V corresponds to exactly one inverse rule in V�1. 2

5 Eliminating function symbols

Although in section 4 we demonstrated an e�cient proce-
dure to answer a query datalog program as well as possible
given only materialized views, it is desirable to transform
the constructed logic program to a datalog program that
represents this answer. This means that we are looking for
a datalog program that is equivalent to (P�;V�1)#. As will
be seen, this is not di�cult. The key observation is that
there are only �nitely many function symbols in (P�;V�1).
Because nested function expressions can never be generated
using bottom-up evaluation, it is possible, with a little bit
of bureaucracy, to keep track of function terms produced
by (P�;V�1) without actually generating tuples containing
function terms.

The transformation proceeds in a bottom up fashion.
Function terms like f(X1; : : : ;Xk) in the IDB predicates of
V�1 are eliminated by replacing them by the list of vari-
ables X1; : : : ;Xk that occur in them. The IDB predicate
names need to be annotated to indicate that X1; : : : ;Xk be-
longed to the function term f(X1; : : : ;Xk). For instance, in
Example 4.2 the rule

edge(X;f(X;Y)) :� v(X;Y)

is replaced by the rule

edgeh1;f(2;3)i(X;X;Y) :� v(X;Y)

The annotation h1; f(2; 3)i represents the fact that the �rst

argument in edgeh1;f(2;3)i is identical to the �rst argument in

edge, and that the second and third argument in edgeh1;f(2;3)i

combine to a function term with the function symbol f as
the second argument of edge. If bottom-up evaluation of
(P�;V�1) can yield a function term for an argument of an
IDB predicate in P�, then a new rule is added with corre-
spondingly expanded and annotated predicates. The follow-
ing example shows this transformation.

Example 5.1 The logic program from example 4.2 is trans-
formed to the following datalog program. The lines indicate
the stages in the generation of the datalog rules.

edgeh1;f(2;3)i(X;X;Y) :� v(X;Y)

edgehf(1;2);3i(X;Y; Y) :� v(X;Y)

qh1;f(2;3)i(X;Y1; Y2) :� edgeh1;f(2;3)i(X;Y1; Y2)

qhf(1;2);3i(X1;X2; Y) :� edgehf(1;2);3i(X1;X2; Y)

q(X;Y) :� edgeh1;f(2;3)i(X;Z1; Z2);

qhf(1;2);3i(Z1; Z2; Y)

qhf(1;2);f(3;4)i(X1;X2; Y1; Y2)

:� edgehf(1;2);3i(X1;X2; Z);

qh1;f(2;3)i(Z;Y1; Y2)

qhf(1;2);3i(X1;X2; Y) :� edgehf(1;2);3i(X1;X2; Z);

q(Z;Y)

qh1;f(2;3)i(X;Y1; Y2) :� edgeh1;f(2;3)i(X;Z1; Z2);

qhf(1;2);f(3;4)i(Z1; Z2; Y1; Y2)

2

The generated datalog programs show explicitly in which
arguments the original logic program was able to produce
function terms. Some tuples with function symbols might
never have been able to contribute to an answer without
function symbols. Using our exact bookkeeping of function
symbols, we are able to eliminate the derivations of these
useless tuples. In the following we are going to present two
optimizations.

De�ne a predicate p to be relevant if there is a path in
the dependency graph from p to the query predicate q. If
a predicate p is not relevant, then no derivation of a tuple
in the answer requires p. Therefore, all rules for irrelevant
predicates can be dropped without losing any answers.

Example 5.2 In the dependency graph for the datalog pro-
gram in example 5.1, there are no paths from predicates
qh1;f(2;3)i and qhf(1;2);f(3;4)i to q. Therefore, these two pred-
icates are irrelevant. The three rules de�ning the irrelevant
predicates can be dropped. The following is the datalog
program after the �rst optimization step:

edgeh1;f(2;3)i(X;X;Y) :� v(X;Y)

edgehf(1;2);3i(X;Y; Y) :� v(X;Y)

qhf(1;2);3i(X1;X2; Y) :� edgehf(1;2);3i(X1;X2; Y)

qhf(1;2);3i(X1;X2; Y) :� edgehf(1;2);3i(X1;X2; Z);

q(Z;Y)

q(X;Y) :� edgeh1;f(2;3)i(X;Z1; Z2);

qhf(1;2);3i(Z1; Z2; Y)

2

The second optimization doesn't reduce the number of
derivations, but is an easy way to save unneccessary copying
of data during the evaluation of the datalog progam. If p is
a predicate in a datalog program that has only one rule, and
the body of this rule has only one subgoal, then predicate p
can be eliminated from the program. For every rule having

5

p as one of its subgoals, unify this subgoal with the head of
the rule of p, and replace the subgoal by the corresponding
body of the rule of p.

Example 5.3 Predicates edgeh1;f(2;3)i and edgehf(1;2);3i in
example 5.1 have only one rule and only one subgoal in the
bodies of their rules, and can therefore be eliminated. The
following is the resulting datalog program:

qhf(1;2);3i(X;Y; Y) :� v(X;Y)

qhf(1;2);3i(X;Z; Y) :� v(X;Z); q(Z;Y)

q(X;Y) :� v(X;Z); qhf(1;2);3i(X;Z; Y)

2

In the following, let us denote the resulting datalog pro-
gram by (P�;V�1)datalog. Clearly, there is a one-to-one cor-
respondence between bottom-up evaluations in (P�;V�1)

and in (P�;V�1)datalog. Because we keep track of function

symbols in (P�;V�1)datalog, we know that the resulting in-
stance of the query predicate q is exactly the subset of the
result of (P�;V�1) that does not contain function symbols.

Theorem 5.1 For every datalog program P and every set of

conjunctive views V, the program (P�;V�1) # is equivalent

to (P�;V�1)datalog.

Assume for a datalog program P and a set of conjunc-
tive views V there exists a retrievable datalog program Pv

that is equivalent to P. Because of theorems 4.2 and 5.1, we
know that the retrievable datalog program (P�;V�1)datalog

is maximally-contained in P. This implies that Pv is con-
tained in (P�;V�1)datalog, and therefore (P�;V�1)datalog is
equivalent to P.

Corollary 5.1 For every datalog program P and every set
of conjunctive views V over the EDB predicates of P, the

retrievable datalog program (P�;V�1)datalog is maximally-
contained in P. Moreover, if there exists a retrievable dat-

alog program that is equivalent to P, then (P�;V�1)datalog

is equivalent to P.

6 Related work

The question of answering queries using views has attracted
a lot of interest recently because of its application in in-
formation integration [Ull97, LRO96a, LRO96b, DG97] and
query optimization [CKPS95, YL87]. All work so far has
been restricted to the case of conjunctive queries. Levy et al.
[LMSS95] showed that the question of determining whether
a conjunctive query can be rewritten to an equivalent con-
junctive query that only uses views is NP-complete. Rajara-
man et al. extended this work in [RSU95] to include binding
patterns in view de�nitions. Binding patterns can be used to
express restricted query capabilities of information sources.
In order to model information sources with more complex
query capabilities, Levy et al. [LRU96] considered how to
answer queries given an in�nite number of conjunctive views.
Huyn [Huy96] proposed \pseudo-equivalent" rewritings in
the case that no equivalent rewritings exist. These ideas
were used in [Qia96] to give an algorithm for rewriting con-
junctive queries given materialized views. Our work is the
�rst that extends the work on answering queries using views
to recursive queries.

6.1 Comparison with other algorithms

In the following, we are going to compare the construction
presented in this paper with two other algorithms for an-
swering queries using views: the bucket algorithm [LRO96a,
LRO96b], and the uni�cation-join algorithm [Qia96]. Be-
cause these algorithms cannot handle recursive queries, we
will illustrate the di�erences between our construction and
these two algorithms using a non-recursive example query.

Example 6.1 As a variation on example 1.1 assume that
three databases are available which are described by the
following views:

v1(F;T) :� flight(F;T; wn)

v2(F;T) :� flight(F;T; ua)

v3(F;T;C) :� flight(F;Z;C); f light(Z;T; C)

The �rst and second database store the pairs of cities be-
tween which Southwest Airlines (wn) and United Airlines
(ua) respectively o�er direct ights. The third database
stores pairs of cities that are connected by ights with one
stop-over, together with the airlines that o�er these ights.
As an example query, assume a user wants to know the air-
lines that y from Tucson to San Francisco with at most one
stop-over:

q(C) :� flight(tus; sfo;C) (�)

q(C) :� flight(tus;Z;C); f light(Z; sfo;C) (�)

Using the construction in section 4, the following maximally-
contained logic program can be obtained in polynomial time:

flight(F;T; wn) :� v1(F;T)

flight(F;T; ua) :� v2(F;T)

flight(F; g(F;T; C); C) :� v3(F;T; C) (*)

flight(g(F; T;C); T;C) :� v3(F;T; C) (*)

q(C) :� flight(tus; sfo;C)

q(C) :� flight(tus;Z;C); f light(Z; sfo;C)

The transformation presented in section 5 would remove the
two rules marked with (*), and would add the following rule:

q(C) :� v3(F;T; C)

2

6.1.1 Bucket algorithm

The bucket algorithm is the algorithm used for query plan-
ning in the Information Manifold system [KLSS95, LRO96a,
LRO96b]. For each subgoal pi in the user query, a \bucket"
Bi is created. If vj is a view containing a predicate r uni�-
able with pi, then vj� is inserted into Bi, where � is a most
general uni�er of pi and r prefering the variables in pi. For
each conjunctive user query c separately, the bucket algo-
rithm constructs retrievable conjunctive queries with the
same head as c, and all possible combinations of view lit-
erals taken from the buckets corresponding to the subgoals
of c as bodies. For each of these retrievable queries, the
algorithm checks whether it can add a constraint C to the
body, such that the expansion of the resulting query is con-
tained in c. All retrievable conjunctive queries that pass this
containment test, will be evaluated to �nd the answer to the
user query.

Example 6.2 Applied to the query in example 6.1, the
bucket algorithm creates three buckets B1, B2, and B3 for
the three subgoals flight(tus; sfo;C), flight(tus; Z;C), and
flight(Z; sfo;C) respectively. The buckets are �lled as fol-
lows:

6

B1 B2 B3

v1(tus; sfo) v1(tus;Z) v1(Z;sfo)
v2(tus; sfo) v2(tus;Z) v2(Z;sfo)
v3(tus; T1; C) v3(tus; T2; C) v3(Z;T3; C)
v3(F1; sfo;C) v3(F2; Z;C) v3(F3; sfo;C)

For each of the four retrievable queries

q(C) :� v1(tus; sfo) (1)

q(C) :� v2(tus; sfo) (2)

q(C) :� v3(tus; T1; C)

q(C) :� v3(F1; sfo;C)

the algorithm checks whether, after adding some constraints,
its expansion is contained in the conjunctive user query (�).
Further, the following sixteen retrievable queries are checked
to see whether, after adding some constraints, their expan-
sion is contained in the conjunctive user query (�):

q(C) :� v1(tus;Z); v1(Z; sfo) (3)

q(C) :� v1(tus;Z); v2(Z; sfo)

q(C) :� v1(tus;Z); v3(Z;T3; C) (4)

q(C) :� v1(tus;Z); v3(F3; sfo;C) (5)

q(C) :� v2(tus;Z); v1(Z; sfo)

q(C) :� v2(tus;Z); v2(Z; sfo) (6)

q(C) :� v2(tus;Z); v3(Z;T3; C) (7)

q(C) :� v2(tus;Z); v3(F3; sfo;C) (8)

q(C) :� v3(tus; T2; C); v1(Z; sfo)

q(C) :� v3(tus; T2; C); v2(Z; sfo)

q(C) :� v3(tus; T2; C); v3(Z;T3; C) (9)

q(C) :� v3(tus; T2; C); v3(F3; sfo;C) (10)

q(C) :� v3(F2; Z;C); v1(Z; sfo) (11)

q(C) :� v3(F2; Z;C); v2(Z; sfo) (12)

q(C) :� v3(F2; Z;C); v3(Z;T3; C) (13)

q(C) :� v3(F2; Z;C); v3(F3; sfo;C) (14)

For each numbered retrievable query, a constraint can be
added to its body such that it passes the containment test.
For example, the constraint that needs to be added to query
(1) is 00C = wn00, and the constraint that needs to be added
to query (10) is 00T2 = sfo00. 2

As the example shows, the bucket algorithm has to perform a
lot of containment tests. This is quite expensive, especially
because testing containment of conjunctive queries is NP-
complete.

6.1.2 Uni�cation-join algorithm

The �rst step of the uni�cation-join algorithm is the same
as the �rst step of the construction given in this paper,
namely the generation of inverse rules. However, whereas
our construction transforms the original query together with
the inverse rules into a retrievable datalog program, the
uni�cation-join algorithm constructs a set of retrievable con-
junctive queries using the so-called uni�cation-join as a cen-
tral step.

For each subgoal pi in the user query, a \label" Li is cre-
ated. If r :� v is one of the inverse rules, and r and pi are
uni�able, then the pair (� # pi; v�) is inserted into Li pro-
vided that � #q does not contain any function terms. Here,
� is a most general uni�er of pi and r, and � #pi and � #q are
the restriction of � to the variables in pi and to the variables
in the query predicate q respectively. The uni�cation-join of

two labels L1 and L2, denoted L1

u
1 L2, is de�ned as follows.

If L1 contains a pair (�1; t1) and L2 contains a pair (�2; t2),

then L1

u
1 L2 contains the pair (�1�[�2�; (t1^t2)�) where �

is a most general substitution such that �1� #�2 = �2� #�1,
provided there is such a substitution �, and provided �1� # q,
�2� # q, and (t1 ^ t2)� do not contain any function terms.
If (�; vi1 ^ : : : ^ vin) is in the uni�cation-join of all labels
corresponding to the subgoals in one of the conjunctive user
queries, and this user query has head h, then the retriev-
able query with head h� and body vi1 ; : : : ; vin is part of the
result.

Example 6.3 Applied to the query in example 6.1, the
uni�cation-join algorithm generates three labels correspond-
ing to the subgoals flight(tus; sfo;C), flight(tus;Z;C),
and flight(Z; sfo;C) respectively:

L1

(fC ! wng; v1(tus; sfo))
(fC ! uag; v2(tus; sfo))

L2

(fC ! wng; v1(tus;Z))
(fC ! uag; v2(tus;Z))
(fZ ! g(tus; T; C)g; v3(tus; T;C))

L3

(fC ! wng; v1(Z;sfo))
(fC ! uag; v2(Z; tus))
(fZ ! g(F; sfo;C)g; v3(F; sfo;C))

The uni�cation-join of L2 and L3 is

L2

u
1 L3

(fC ! wng; v1(tus;Z) ^ v1(Z; sfo))
(fC ! uag; v2(tus;Z) ^ v2(Z;sfo))
(fZ ! g(tus; sfo;C)g; v3(tus; sfo;C)).

The labels corresponding to conjunctive queries (�) and (�)

are L1 and L2

u
1 L3 respectively. The retrievable conjunc-

tive queries that can be constructed from L1 and L2

u
1 L3

are:

q(wn) :� v1(tus; sfo)

q(ua) :� v2(tus; sfo)

q(wn) :� v1(tus;Z); v1(Z; sfo)

q(ua) :� v2(tus;Z); v2(Z; sfo)

q(C) :� v3(tus; sfo;C)

2

The uni�cation-join algorithm doesn't require any contain-
ment tests. However, it might generate an exponential num-
ber of conjunctive queries in cases when our algorithm gen-
erates a small datalog program. As an example, assume that
there are k views of the form

vi(X;Y) :� p(X;Y); pi(X;Y) for i = 1; : : : ; k.

Given the user query

q(X0;Xn) :� p(X0;X1); p(X1;X2); : : : ; p(Xn�1;Xn)

the constructed maximally-contained datalog program is the
following:

p(X;Y) :� v1(X;Y)
...

p(X;Y) :� vk(X;Y)

q(X0;Xn) :� p(X0;X1); p(X1;X2); : : : ; p(Xn�1;Xn)

7

Evaluating this datalog program requires k � 1 unions and
n�1 joins. On the other hand, the uni�cation-join algorithm
yields the following kn retrievable conjunctive queries:

q(X0;Xn) :� vj1(X0;X1); vj2(X1;X2); : : : ;
vjn(Xn�1;Xn)

for all j1; : : : ; jn 2 f1; : : : ; kg.

Evaluating these conjunctive queries requires kn � 1 unions
and (n� 1)kn joins.

7 Conclusions and future work

This paper considered the problem of answering datalog
queries if only materialized views are available as EDB pred-
icates. We showed that for recursive queries and conjunc-
tive views it is undecidable whether there exists an equiva-
lent retrievable datalog program. For all practical purposes
the much more important problem is to construct retriev-
able programs that can use the available views in a best
possible manner, i.e. to construct maximally-contained pro-
grams. We showed that a simple, polynomial-time construc-
tion yields maximally-contained logic programs. Finally, we
demonstrated how to translate these logic programs into
pure datalog programs.

It would be interesting to investigate whether there are
classes of datalog programs for which the problem of �nd-
ing an equivalent datalog program that only uses views be-
comes decidable. The construction in section 4 can be ex-
tended to take functional dependencies and restrictions on
binding-patterns into account. It should also be possible to
incorporate built-in order predicates. Views in this paper
were restricted to conjunctive queries. We are working on
generalizing the ideas presented here to views that have dis-
junctions in their description. Finally, it is an open question
whether view de�nitions can themselves be recursive.

Acknowledgments

We would like to thank Whitney Carrico and Harish De-
varajan for helpful comments that improved this paper.

References

[CKPS95] Surajit Chaudhuri, Ravi Krishnamurthy, Spy-
ros Potamianos, and Kyuseak Shim. Optimizing
queries with materialized views. In Proceedings
of the Eleventh International Conference on Data

Engineering, IEEE Comput. Soc. Press, pages
190{200, Los Alamitos, CA, 1995.

[CM77] Ashok K. Chandra and Philip M. Merlin. Opti-
mal implementation of conjunctive queries in re-
lational data bases. In Proceedings of the Ninth

Annual ACM Symposium on the Theory of Com-
puting, pages 77{90, 1977.

[DG97] Oliver M. Duschka and Michael R. Genesereth.
Query planning in Infomaster. In Proceedings of
the 1997 ACM Symposium on Applied Comput-

ing, San Jose, CA, 1997.

[Huy96] Nam Quan Huyn. A more aggressive use of views
to extract information. Technical Report STAN-
CS-TR-96-1577, Department of Computer Sci-
ence, Stanford University, 1996.

[KLSS95] Thomas Kirk, Alon T. Levy, Yehoshua Sa-
giv, and Divesh Srivastava. The Information
Manifold. In Proceedings of the AAAI Spring
Symposium on Information Gathering in Dis-

tributed Heterogeneous Environments, Stanford,
CA, 1995.

[LMSS95] Alon Y. Levy, Alberto O. Mendelzon, Divesh
Srivastava, and Yehoshua Sagiv. Answering
queries using views. In Proceedings of the 14th

ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, San Jose,
CA, 1995.

[LRO96a] Alon Y. Levy, Anand Rajaraman, and Joann J.
Ordille. Query-answering algorithms for infor-
mation agents. In Proceedings of the Thirteenth

National Conference on Arti�cial Intelligence,
AAAI-96, Portland, OR, 1996.

[LRO96b] Alon Y. Levy, Anand Rajaraman, and Joann J.
Ordille. Querying heterogeneous information
sources using source descriptions. In Proceedings

of the 22nd International Conference on Very
Large Databases, Bombay, India, 1996.

[LRU96] Alon Y. Levy, Anand Rajaraman, and Je�rey D.
Ullman. Answering queries using limited ex-
ternal processors. In Proceedings of the 15th

ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, Montreal,
Canada, 1996.

[Qia96] Xiaolei Qian. Query folding. In Proceedings of

the 12th International Conference on Data Engi-
neering, pages 48{55, New Orleans, LA, 1996.

[RSU95] Anand Rajaraman, Yehoshua Sagiv, and Jef-
frey D. Ullman. Answering queries using tem-
plates with binding patterns. In Proceedings

of the 14th ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems,
1995.

[RSUV89] Raghu Ramakrishnan, Yehoshua Sagiv, Jef-
frey D. Ullman, and Moshe Y. Vardi. Proof-tree
transformation theorems and their applications.
In Proceedings of the Eighth ACM SIGACT-

SIGMOD-SIGART Symposium on Princicples of

Database Systems, pages 172 { 181, Philadelphia,
PA, 1989.

[Shm87] Oded Shmueli. Decidability and expressiveness
aspects of logic queries. In Proceedings of the
Sixth ACM Symposium on Principles of Database

Systems, pages 237 { 249, 1987.

[Ull89] Je�rey D. Ullman. Principles of Database and
Knowledgebase Systems, volume 2. Computer
Science Press, 1989.

[Ull97] Je�rey D. Ullman. Information integration using
logical views. In Proceedings of the Sixth Inter-

national Conference on Database Theory, 1997.

[YL87] H. Z. Yang and P.-�A. Larson. Query transforma-
tion for PSJ-queries. In Proceedings of the Thir-
teenth International Conference on Very Large

Data Bases, pages 245{254, Los Altos, CA, 1987.

8

